
DOE	ASCR	Applied	Mathematics	Principal	Investigators'	(PI)	Meeting,	Rockville,	MD,	September	11-12,	2017

Approach
Many graph algorithms have been defined in the language
of matrices. We and others have built high-performance
graph libraries based on sparse linear algebra. The PI and
collaborators formed the GraphBLAS Forum
(http://graphblas.org) to standardize the low-level building
blocks used in graph algorithms.
§ Completed the mathematical formalizations of

GraphBLAS.
§ Defined the binding of the C programming language

onto the mathematical definition, creating the
GraphBLAS C API.

§ Our Berkeley team performed fundamental research in
defining the functions and their mathematical semantics.

§ Worked on efficiently mapping problems that are of
interest to DOE onto GraphBLAS (see Ariful Azad’s
poster for a comprehensive list)

§ Developed novel communication-avoiding parallel
algorithms for the GraphBLAS functions.

Additional research is needed to develop communication-
avoiding and work-efficient algorithms for the complete
GraphBLAS specification in its full generality.

Abstract
This project explores methods to increase the energy
efficiency of parallel graph and data mining algorithms. We
are developing a new family of algorithms that reduce the
energy footprint, communication costs, and running time of
the graph and sparse matrix computations that form the
basis of various data mining techniques. We exploit the
well-known duality between graph and sparse matrices to
develop communication-avoiding graph algorithms that
consume significantly less power. The resulting parallel
graph algorithms, including fundamental routines such as
graph ordering, matching, and contraction, are scalable
beyond thousands of processors.

Conclusions and Future Work

Motivation
Data are fundamental sources of insight for experimental
and computational sciences. The graph abstraction
provides a natural way to represent relationships among
complex fast-growing scientific data sets. Power
consumption is of primary concern on future systems, yet
existing graph algorithms consume too much energy per
useful operation due to their high communication costs, lack
of locality, and inability to exploit hierarchy.

EDGAR: Energy-efficient
Data and Graph Algorithms Research

Aydın Buluç (abuluc@lbl.gov), Ariful Azad
Lawrence Berkeley National Laboratory

https://tinyurl.com/ycvgwogs

Major results
• GraphBLAS mathematical description [1] and the C API

specification [2]

• Parallel algorithms for sparse-matrix- sparse matrix
multiplication (SpGEMM) [3]
1. Split-3D-SpGEMM: an efficient implementation of

communication-avoiding SpGEMM [4]
2. Novel shared-memory kernel for in-node parallelism [4]

• A work-efficient parallel algorithm for
sparse matrix-sparse vector multiplication (SpMSpV) [5]
1. First ever work-efficient algorithm for SpMSpV: 15x

speedup on 24 cores & up to 49x speedup on 64 cores.
2. Up to an order of magnitude faster than its competitors,

especially for sparser vector

• Communication-avoiding algorithm for sparse-dense
matrix multiplication [6]. Explored all possible variants of
algorithms, proved tight lower bounds, identified the best
algorithm for each sparsity and concurrency regime.

Areas in which we can help

References
1. J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine,

H. Meyerhenke, S. McMillan, J. Moreira, J. Owens, C. Yang, M. Zalewski, T. Mattson. Mathematical
foundations of the GraphBLAS. In IEEE High Performance Extreme Computing (HPEC), 2016

2. Aydin Buluç, Timothy Mattson, Scott McMillan, Jose Moreira, and Carl Yang. Design of the GraphBLAS
API for C. In IEEE Workshop on Graph Algorithm Building Blocks, IPDPSW, 2017.

3. Grey Ballard, Aydin Buluç, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz, and Sivan
Toledo. Communication optimal parallel multiplication of sparse random matrices. In SPAA 2013: The 25th
ACM Symposium on Parallelism in Algorithms and Architectures, Montreal, Canada, 2013.

4. Ariful Azad, Grey Ballard, Aydin Buluç, James Demmel, Laura Grigori, Oded Schwartz, Sivan Toledo, and
Samuel Williams. Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication. SIAM Journal
on Scientific Computing (SISC), 38(6):C624-C651, 2016.

5. Ariful Azad and Aydin Buluç. A work-efficient parallel sparse matrix-sparse vector multiplication algorithm.
In Proceedings of the IPDPS, 2017.

6. Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Sang-Yun Oh, Leonid Oliker, and
Katherine Yelick. Communication-avoiding parallel sparse-dense matrix-matrix multiplication. In Proceedings
of the IPDPS, 2016.

Areas in which we need help

Graph abstraction is a powerful way of organizing and
representing data; hence making graph algorithms
ubiquitous in data analytics.

Big idea: sparse matrix-graph duality makes graph
algorithms scalable and allows us to avoid communication
at the sparse matrix algebra level. Algorithms that avoid
communication are also energy efficient.

The graph algorithms enabled by EDGAR are often used
as building blocks of algebraic solvers, such as direct and
iterative sparse linear solvers and algebraic multigrid.
These solvers are heavily used by DOE Office of Science
researchers, where we anticipate immediate impact.

On longer time frame, the primitives developed here will
have impact on bioinformatics, data mining and analysis,
machine learning, and electronic structure calculations.

• Scalable Machine Learning
• Extreme-Scale Data Analysis
• Biological Systems Science
• Compiling and Scheduling for Quantum Computing
• Sparse Numerical Solvers

• Domain science expertise for interpreting results of
methods and algorithms we develop.

• Lightweight parallel programming abstractions for
productive and high-performance programming.

64 256 1024 4096 163840.25

1

4

16

Number of Cores

Ti
m

e
(s

ec
)

nlpkkt160 x nlpkkt160 (on Edison)

2D (t=1)
2D (t=3)
2D (t=6)
3D (c=4, t=1)
3D (c=4, t=3)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

2D
#threads

increasing

3D
#layers &
#threads

 increasing

A::1$

A::2$

A::3$

n pc

Al
lto

Al
l%

Al
lto

Al
l%

C int
ijk = Ailk

l=1

p/c

∑ Bljk

A$ B$ Cintermediate$ Cfinal%

x$

x$

x$

=$

=$

=$

!$

!$

!$

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

X-axis: Number of cores
(Intel Ivy Bridge)Ti

m
e

(m
illi

se
co

nd
s)

0 20 40 60 80 100

65,536
32,768
16,384

8,192
4,096
2,048
1,024

512
256
128

64
32
16

8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC

3D SUMMA ABC
c=16

c=8
c=4
c=2
c=1

(a) 1:1

0 20 40 60 80 100

65,536
32,768
16,384

8,192
4,096
2,048
1,024

512
256
128

64
32
16

8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC 3D SUMMA ABC

(b) 200,200:17,160 = 11.67:1

0 20 40 60 80 100

65,536
32,768
16,384

8,192
4,096
2,048
1,024

512
256
128

64
32
16

8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC

3D SUMMA ABC

(c) 66,185:172,431 = 0.38:1
Fig. 4: Illustrating areas that each algorithm has theoretically lowest overall bandwidth cost. X-axis is the ratio of nnz(A) versus nnz(B). Y-axis is the
number of processors. There are three subgraphs for three different nnz(C) : nnz(B) ratios. 1.5D ABC stands for both Col ABC and InnerABC. The area
for 1.5D ABC includes the area for 1.5D Col A. Best replication factors for each data point are shown in colors. General observation is that ColA is best for
sparser matrices or lower concurrency while SummaABC is the opposite. 1.5D ABC algorithms help improve scalability of ColA.

to be considerably large for this trade-off to pay off. When
ColABC and InnerABC are not replicating, they have equal
overall bandwidth costs to ColA. SummaABC moves the dense
matrix B in every phase so it is unlikely to beat any of the 1.5D
algorithms in terms of bandwidth when A is very sparse. It
will become preferable again when nnz(A) becomes closer to
nnz(B), decreasing the message-size imbalance, or when the
number of processors grows large (since it minimizes latency).

It is best to obtain hardware parameters to determine this
latency-bandwidth trade-off. However, it would be great to
see the big picture of where each algorithm is most suitable
for without being specific to any particular machine. We
found that the bandwidth costs are more prominent in our
experiments, so we focus our analysis on just them for sim-
plicity. Dividing the bandwidth costs in Table I with nnz(B)

and representing nonzero ratios nnz(A)/ nnz(B) = f and
nnz(C)/ nnz(B) = g eliminate one variable off the table.
Knowing g, we can plot a graph with p and f as axes and
search for the best algorithm over all possible c’s at each
point. We picked three different nnz(C) : nnz(B) ratios (g),
1:1 in Figure 4a, 11.67:1 in Figure 4b, and 0.38:1 in Figure 4c.
For an SpDM3 problem, nnz(C) : nnz(B) ⇡ m : ` and can
be interpreted as the tallness of matrix A. For example, 1:1
means square A’s, 11.67:1 applies to tall A’s, and 0.38:1 refers
to rather fat A’s. We draw black lines to separate between
algorithms and use colors to show the best replication factors.
The best replication factor for ColA is always 1 because it
does not reduce bandwidth with increasing c. The area that
ColA wins is a subset of the area that ColABC and InnerABC
win. The graphs confirm the intuition from earlier analysis that
ColA is most suitable with very sparse matrices or small scale
runs. ColABC and InnerABC can help improve scalability
to some level, but eventually SummaABC wins as we move
towards larger concurrency or denser matrices.

Since this analysis is based on just nnz(A), nnz(B), and
nnz(C), it is trivially applicable to sparse-sparse matrix-matrix
multiplication (of different sparsities and/or sizes) or even
dense-dense matrix-matrix multiplication (of different sizes).

V. PERFORMANCE RESULTS

We implemented all four algorithms listed in Table I using
C++ and MPI. A is stored in zero-based indexing Compressed
Sparse Row (CSR) format;2 B and C are stored in row-major
format, except where noted. We used the multi-threaded Intel®
Math Kernel Library (MKL) for local sparse-dense matrix-
matrix multiplication (mkl dcsrmm). We ran our experiments
on Edison, a Cray XC30 machine at the National Energy
Research Scientific Computing Center (NERSC). Edison has
a Cray Aries interconnect with a Dragonfly topology and
consists of 5,576 compute nodes, each with 2 sockets of 12-
core Intel Ivy Bridge processors running at 2.4GHz and with
64 GB memory. We used Intel’s C++ compiler (icpc) version
15.0.1, Intel MKL version 11.2.1, and Cray MPICH version
7.3.1. All benchmarks are run with 2 MPI processes per node
and 12-way multi-threaded MKL operation per process. We
did not utilize Intel’s Hyper-Threading Technology nor Turbo
Boost Technology to avoid high performance variance.

A. Trends in Communication Costs

Figure 5 shows the cost breakdown of all algorithms running
on 3, 072 processors (256 MPI processes). A is an Erdős-
Rényi matrix with n=65, 536 and 41 nonzeroes per row
(0.0625% nonzeroes). The first two bars on the left belongs to
SummaABC where all three matrices are replicated 1 (i.e., not
at all) and 4 times, respectively. The next group is the ColA
algorithm in which A is partitioned into block columns and
replicated with the factors (c) shown above the algorithm’s
name. The last two groups are ColABC and InnerABC with
similar replication factors (c) shown in each label. All costs
in the stacked bars are average costs over all processors.

The computation times in green are unequal even though
all algorithms do the same amount of work. This is be-
cause the local MKL matrix-multiplication routine has varying

2The CSC (Compressed Sparse Column) format would scale better in
terms of storage for the blocked column algorithms, but we found MKL’s
multiplication routine for the CSC format (mkl dcscmm) significantly slower
than the CSR’s (mkl dcsrmm), so we used CSR format in all implementations.

Used in partial
correlation
estimation and
dimensionality
reduction

